
 

QUADRATIC LOSS A WORKED EXAMPLE

From last class
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Find theextreme value set gradient to zero
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But we can do better Determiningbest X is cheap
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Behavior is intimately linked to eigenvalues and
eigenvectors of



GRADIENT DESCENT

Let's write our loss in the format of the analysis
in Goh's paper
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GRADIENT ITERATION
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A is symmetric so admits eigenanalysis
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Now let's look at consecutive iterations
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I at is a simpler expression than I aA the former is
a diagonal matrix Let's try to get gradient descent to look
like I all first let's translate the whole problem so that
the minimum is at zero and then let's writeeverything in terms
of vectors multiplied by QT
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How do we make sure that wk will go to w

Theether w w most go to zero In addition each
coordinate of Qtlw WY goes to zero or fails to independently
of the other each gets scaled by I M every iteration



This is the true picture of gradient descent the error
vector is multidimensional and the amount it shrinks on

coordinate i ofthe eigenspace is given by II nil and
each coordinate shrinks independently of the other

Given an initial guess I the magnitudeof the quadratic
error is

I 2

Even if each x is identical each iteration reduces each

coordinate proportionally to Xi so the features corresponding
to smaller eigenvalues will take longer to converge to
their minimum The difference between early iterators and
late iterations then is due to features coming from
small eigenvalues



WHAT ABOUT REGULARIZATION

Intuitively regularization shadd make optimization want
smaller w vectors
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This becomes directly obvious when we consider a gradient
descent update
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S a step taken with a regularized loss is like
first moving a little towards zero andthentaking a

regular step
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the notation here gets alittle confusing X is the
regularization term and Xi are theeigenvalues of A



finally let's considerthe difference between the solution
of the regularized problem and the solution of the
unregularized problem The difference incredibly is analogous
to that of choosing whether to stop gradient descent
early

2 few wtA w 2wTb X11wtf
2 Of 2Aw 2b 2Xw
Pf A XI w b

A HI w b

w A b

w LAHIJb
ut w At AtxIT b

But recall our eigasanalysis
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Stupid linear algebra tricks now
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What happens when XD di

What happens when Xi D t


